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1< ABSTRACT

A real~time neural network model is described in which reinforcement helps to focus

attention upon and organize learning of those environmental events and contingencies that

have predicted behavioral success in the past. Computer simulations of the model repro-

duce properties of attentional blocking, inverted-U in learning as a function of interstim-

ulus interval, primary and secondary excitatory and inhibitory conditioning, anticipatory

conditioned responses, attentional focussing by conditioned motivational feedback, and

limited capacity short term memory processing. Qualitative explanations are offered of

why conditioned responses extinguish when a conditioned excitor is presented alone, but

do not extinguish when a conditioned inhibitor is presented alone. These explanations

invoke associative learning between sensory representations and drive, or emotional, rep-

resentations (in the form of conditioned reinforcer and incentive motivational learning),

between sensory representations and learned expectations of future sensory events, and

between sensory representations and learned motor commands. Drive representations are

organized in opponent positive and negative pairs (e.g., fear and relief), linked together

by recurrent gated dipole, or READ, circuits. Cognitive modulation of conditioning is

regulated by adaptive resonance theory, or ART, circuits which control the learning and

matching of expectations, and the match-contingent reset of sensory short term memory. -

Dendritic spines are invoked to dissociate read-in and read-out of associative learning and

to thereby design a memory which does not passively decay, does not saturate, and can be

actively extinguished by opponent interactions.
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1. Introduction

A key problem in biological theories of intelligence concerns the manner in which

external events interact with internal organismic requirements to trigger learning processes

capable of focussing attention upon motivationally desired goals. The results reported

herein further develop a neural theory of learning and memory (Grossberg, 1982, 1987) in

which sensory-cognitive and cognitive-reinforcement circuits help to focus attention upon

and organize learning of those environmental events that predict behavioral success.

The first set of results (Grossberg and Levine, 1987) describe computer simulations

that show how the model reproduces properties of attentional blocking, inverted-U in

learning as a function of interstimulus interval, anticipatory conditioned responses, sec-

ondary reinforcement, attentional focussing by conditioned motivational feedback, and

limited capacity short-term memory processing. Conditioning occurs from sensory to drive

representations ("conditioned reinforcer" learning), from drive to sensory representations

("incentive motivational" learning), and from sensory to motor representations ("habit"

learning). The conditionable pathways contain long-term memory traces that obey a non-

Hebbian associative law. The neural model embodies a solution of two key design problems

of conditioning, the synchronization and persistence problems. This model of vertebrate

learning has also been compared with data and models of invertebrate learning. Pre-

dictions derived from models of vertebrate learning have been compared with data about

invertebrate learning, including data from Aplyuia about facilitator neurons and data from

Hermissanda about voltage-deprudeut Ca" currents.

In the second set of results i(; sberg and Schmajuk, 1987), representations are ex-

panded to include positive and negative opponent drive representations, as in the oppo-

nency between fear and relic( This expanded real-time neural network model is developed

to explain data about the ac qusotItom &Ad extinction of conditioned excitors and inhibitors.

Systematic computer simulations have been performed to characterize a READ circuit,

which joins together a mechaIm 4, associative learning with an opponent processing
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circuit, called a recurrent gated dipole. READ circuit properties clarify how positive and

negative reinforcers are learned and extinguished during primary and secondary condi-

tioning. Habituating chemical transmitters within a gated $:pole determine an affective

adaptation level, or context, against which later events are evaluated. Neutral CS's can

become reinforcers by being associated either with direct activations or with antagonis-

tic rebounds within a previously habituated dipole. Neural mechanisms are characterized

whereby conditioning can be actively extinguished, by a process called opponent eztinction,

even if no passive memory decay occurs.

READ circuit mechanisms are joined to mechanisms for associative learning of in-

centive motivation; for activating and storing internal representations of sensory cues in

a limited capacity short term memory (STM); for learning, matching, and mismatching

sensory expectancies, learning to the enhancement or updating of STM; and for shift-

ing the focus of attention toward sensory representations whose reinforcement history is

consistent with momentary appetitive requirements. This architecture ham been used to

explain conditioning and extinction of a conditioned excitor; conditioning and extinction

of a conditioned inhibitor; properties of conditioned inhibition as a "slave' process and

as a "comparator* process, including effects of pretest deflation or inflation of the condi-

tioning context, of familiar or novel training or test contexts, of weak or strong shocks,

and of preconditioning US-alone exposures. The same mechanisms have also been used

(Grousberg, 1982, 1987) to explain phenomena such as unblocking, overshadowing, latent

inhibition, sup ronditioning, partial reinforcement acquisition effect, learned helplessness,

and vicious-circle behavior. The theory clarifies why alternative models have been unable

to explain an equally large data base.
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2. Neural Network Macrocircuits

Two types of macrocircuits control learning within the model.

Sensory-Conimtive Circuit: Sensory-cognitive interactions in the theory are carried

out by an Adaptive Resonance Theory (ART) circuit (Carpenter and Grossberg, 1985,

1987a, 1987b; Grossberg, 1976, 1987). The ART architecture suggests how internal repre-

sentations of sensory events, including conditioned stimuli (CS) and unconditioned stimuli

(US), can be learned in stable fashion (Figure 1). Among the mechanisms used for stable

self-organization of sensory recognition codes are top-down expectations which are matched

against bottom-up sensory signals. When a mismatch occurs, an arousal burst acts to reset

the sensory representation of all cues that are currently being stored in STM. In particular,

representations with high STM activation tend to become less active, representations with

low STM activation tend to become more active, and the novel event which caused the

mismatch tends to be more actively stored than it would have been had it been expected.

Figure 1

Cognitive-Reinforcement Circuit: Cognitive-reinforcer interactions in the theory

are carried out in the circuit described in Figure 2. In this circuit, there exist cell pop-

ulations that are separate from sensory representations and related to particular drives

and motivational variables (Grossberg, 1972, 1987). Repeated pairing of a CS sensory

representation, S,,, with activation of a drive representation, D, by a reinforcer causes the

modifiable synapses connecting S,. with D to become strengthened. Incentive motivation

pathways from the drive representations to the sensory representations are also assumed

to be conditionable. These S -. D -. S feedback pathways shift the attentional focus

to the set of previously reinforced, motivationally compatible cues (Figure 2). This shift

of attention occurs because the sensory representations, which emit conditioned reinforcer

signals and receive incentive motivation signals, compete among themselves for a limited

capacity short-term memory (STM) via a shunting on-center off-surround anatomy. When

3
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incentive motivational feedback signals are received at the sensory representational field,

these signals can bias the competition for STM activity towards motivationally salient

cues.

Figure 2

3. Attentional Blocking and Interstimulus Interval

The attentional modulation of Pavlovian conditioning is part of the general problem of

how an information processing system can selectively process those environmental inputs

that are most important to the current goals of the system. A key example is the blocking

paradigm studied by Kamin (1969) (Figure 3). First, a stimulus CS1 , such as a tone, is

presented several times, followed at a given time interval by an unconditioned stimulus

US, such as electric shock, until a conditioned response, such as fear, develops. Then CS,

and another stimulus CS2, such as a light, are presented together, followed at the same

time interval by the US. Finally, CSI is presented alone, not followed by a US, and no

conditioned response occurs.

Figure 3

The blocking paradigm suggests four key subproblems of the selective information

processing problem. These subproblems are: (1) How does the pairing of CS with US

in the first phase of the blocking experiment endow the CS1 cue with properties of a

conditioned, or secondary, reinforcer? (2) How do the reinforcing properties of a cue shift

the focus of attention towards its own processing? (3) How does the limited capacity of

attentional rmourcus arise, so that a shift of attention towards one set of cues can prevent

other cues from being attended? (4) How does withdrawal of attention from a cue prevent

that cue from entering into new conditioned relationships?

The explanation of blocking also leads to an explanation of the inverted-U relationship

between strength of the conditioned response (measured in one of several ways) and the

time interval (ISI) between conditioned and unconditioned stimuli. Figure 4 gives an

4



example of experimental data on the effects of ISI from studies of Smith et al. (1969) and

Schneiderman and Gormenzano (1964) of the rabbit nictitating membrane response. This

is noteworthy because Sutton and Barto (1981) previously stated that the ISI data pose a

difficulty for any network with associative synapses, that is, synapses whose efficacy changes

as a function of the correlation between presynaptic and potsynaptic activities. They

argued that a network with associative synapses should, to a first approximation, have an

optimal ISI of zero because cross-correlation between two stimulus traces is strongest when

the two stimuli occur simultaneously. To avoid this difficulty, other modellers introduced

a delay in the CS pathway that was equal to the optimal IS. But such a delay would delay

the CR by an equal amount, and hence is incompatible with the so-called anticipatory

CR that occurs before US onset. On this basis, Sutton and Barto suggested a different

synaptic modification rule at the single-unit level.

Figure 4

Our simulations, by contrast, reproduce both the ISI data and the anticipatory CR

without invoking a long delay in the CS pathway. Poor conditioning with CS and US si-

multaneous, or nearly so, is explained by a mechanism identical to the blocking mechanism

except that CS is replaced by US and CS 2 by CS. In both caes, the stimulus with more

motivational significance inhibits the processing of the stimulus with less motivational sig-

nificance. Poor conditioning with CS and US far apart in time occurs because by the time

the US arrives, the CS representation has decayed in short-term memory to a level that is

below the threshold for affecting efficacy of the appropriate synapses.

The answers to subproblems (i) to (4) are obtained from study of a network which

includes modifiable associative links between sensory and drive representations (in both

directions) and competitive links between different sensory representations (Figure 2). The

associative links do not obey Hebb's postulate because cross-correlation is counteracted by

decays; hence, synaptic efficacy can either increase or decrease with paired presynaptic and

5
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postsynaptic activities (Grosberg, 1968, 1969, 1982), not just increase, as Hebb claimed

(Hebb, 1949). Such an associative law has recently received direct neurophysiological sup-

port (Levy, Brassel, and Moore, 1983; Levy and Desmond, 1985; Rauschecker and Singer,

1979; Singer, 1983). The existence of drive representations was derived from an analysis

of the synchronization problem (Grossberg, 1971); that is, of how a stable conditioned

response can develop even if variable time lags occur between the CS and the US. These

drive representations, separate from the sensory representations of particular stimuli, are

what Bower has called emotion nodes (Bower, 1981; Bower, Gilligan, and Monteiro, 1981)

and Barto, Sutton, and Anderson (1983) have called adaptive critic elements. A US uncon-

ditionally activates its drive representation if the drive level is sufficiently high. Repeated

pairing of a CS with, for example, a food US causes pairing of stimulation of the CS sensory

representation, denoted SC$, with that of the representation for the hunger drive, denoted

D1. The answer to subproblem (1) therefore depends on the strengthening of $c$ --+ DH

synapses according to an associative rule.

Subproblem (2) is answered using DH -. Ss incentive motivational feedback. In

the blocking experment, ScS, is enhanced relative to Scs 2 . Sea2 will thus tend to be

suppressed due to competition between sensory representations that causes limited capacity

of short term memory storage. Simlarly, in the simultaneous phase of the ISI experiment,

SUS is more enhanced than Scs. to that Scs is suppressed.

The limited capacity of short-term memory, which is needed to answer subproblem (3)

arises from limited capacity proper tes of a recurrent on-center off-surround field, which

was originally derived to satisfy a more basic processing requirement: the ability to process

spatially distributed input patter- i w.thout irreparably distorting these patterns due to

either noise or saturation (Elho and ;r,'Aberg, 1975; Grossberg and Levine, 1975). Figure

2 schematizes a network with a, i.-abo sensory-to-drive and drive-to-sensory association

links and recurrent on-center of .,r-,.nd iinks between sensory representations.

Our computer simulations. rrp4,re'* more completely in Grossberg and Levine (1987),

S



run through different stimulus conditions on the network of Figure 5, which is a variant of

Figure 2 with three sensory representations, CS 1 , CS 2, and US. For simplicity, there is

only one drive representation, D, in our network. The US --+ D and D -- US synapses are

fixed at high value. The CS -. D and D --+ CS synapses are strengthened by appearance

of the US while the CS short term memory representation is active. In this variant of the

network, sensory representations are divided into two successive stages. The activity zl

of the ith first stage can activate conditioned reinforcer pathways, whereas the activity z1 2

of the ith second stage receives conditioned incentive motivational pathways from D, and

can thereupon activate zil and output motor pathways.

The same set of network parameters yielded both the ISI inverted-U curve in the case

of only one CS present, and blocking in the case of two CS's. In both cases, the CR

anticipated the US.

Figure 5

Our simulated ISI curves (Figure 6) were qualitatively compatible with experimental

data on the rabbit's conditioned nictitating membrane response shown in Figure 4. For

IS's of fewer than 2 time units in the numerical algorithm, competition from the US

representation prevented CS activity from staying above the ScS - D pathway's threshold

long enough to appreciably increase the pathway's strength while D was activated by the

US. At long ISI's, the prior decay of the CS's short term memory trace prevented the

ScS --+ D pathway from sensing the later activation of D by the US.

Figure 6

In the blocking simulation (Figures 7a-7d), pairing of CS, with a delayed US enabled

the long term memory trace of the CSI --+ D pathway to achieve an S-shaped cumulative

learning curve. After CS, had become a conditioned reinforcer, it enhanced its own short

term memory storage by generating a large ScS -.+ D -* Scs1 feedback signal. As a

result, when CS, and CS 2 were simultaneously presented, the short term memory activity

7



of S$, was quickly suppressed by competition from CS. Consequently, the long term

memory Scs, --o D pathway did not grow in strength, preventing the CS 2 from being a

conditioned reinforcer or eliciting a CR.

Figure 7

4. Comparison with Aplysia Conditioning Model

An alternative explanation of blocking, due to Hawkins and Kandel (1984), involved

habituation of transmitter pathways. Based on invertebrate evidence, they developed

a model whereby each US activates a facilitator neuron that presynaptically modulates

CS pathways. They explain blocking (p.385) by saying that "the output of the facilitator

neurons decreases when they are stimulated continuously". Thus after a CS, is paired with

a US on a number of trials, subsequent presentation of a compound stimulus CS + CS 2

with a US does not condition CS2 because the facilitator neuron cannot fire adequately.

Hawkins and Kandel's explanation, however, is incompatible with the fact (Kamin, 1969)

that blocking can be overcome ("unblocked") if CS 1 + CS 2 is paired with either a higher

or lower intensity of shock than CS, alone. Recent evidence (Matzel et al.. 1985) indicates

that unblocking can also occur if the response to CS, is extinguished.

In our framework, the explanation for unblocking depends on gated dipole opponent

processes that link together "positive" and "negative" drive representations (Figure 8).

Positive and negative channels allow for a comparison between current and expected levels

of positive or negative reinforcement. The more complete theory of Grossberg (1982, 1987)

which includes gated dipoles has explained such unblocking results quantitatively.

Figure 8

In the remainder of the article, some of our computer simulation results using gated

dipoles are summarized. A more systematic development is provided in Grossberg and

Schmajuk (1987). Such gated dipoles are needed because, in the cognitive-reinforcement

circuit, CS's are conditioned to either the onset or the offset of a reinforcer. In order to

8
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explain how the offset of a reinforcer can generate an antagonistic rebound to which a

simultaneous CS can be conditioned, gated dipoles were introduced by Grossberg (1972).

A gated dipole is a minimal neural network which is capable of generating a sustained,

but habituative, on-response to onset of a cue, as well as a transient off-response, or

antagonistic rebound, to offset of the cue.

5. The READ Circuit: A Synthesis of Opponent Processing and Associative

Learning Mechanisms

Although several varieties of a gated dipole circuit can describe the association between

a CS with the onset and the offset of a reinforcer, a specialized gated dipole is needed

to explain secondary inhibitory conditioning. Secondary inhibitory conditioning consists

of two phases. In phase one, CS, becomes an excitatory conditioned reinforcer (e.g.,

source of conditioned fear) by being paired with a US (e.g., a shock). In phase two,

the offset of CS, can generate an off-response which can condition a subsequent CS 2 to

become an inhibitory conditioned reinforcer (e.g., source of conditioned relief). In order to

explain secondary inhibitory conditioning, a gated dipole circuit must also contain internal

feedback pathways, i.e., it should be recurrent. In addition, such a recurrent gated dipole

must be joined to a mechanism of associative learning. The total circuit that we have

analyzed is called a READ circuit, as a mnemonic for REcurrent Associative gated Dipole

(Figure 9).

Figure 9

The equations for the READ circuit are as follows:

Arousal + US + Feedback On-Activation:

d

Arousal + Feedback Off-Activation:

d = -A 2 2 + I + T(zs) (2)

9



On-Transmntter:
d

ay =B(1 - y)- Cg(xl)y1 (3

Off-Transmitter:
d
tU2 = B (1 - y2) - C9(X2)Y2 (4)

Gated On-Activation:

d
TtX3 = -A 3z 3 + Dg(xl)yt (5)

Gated Off-Activation:

d
-z4 = -A4X4 + Dg(z 2)Y2  (8)

Normalized Opponent On-Activation:

d
ixs = -AX55 + (E - XS)X3 - (X5 + F): 4  (7)

Normalized Opponent Off-Activation:

d
T6 = -A 6 x6 + (E - X6)X4 - (X6 + F)X3  (8)

Total On-Activation:

aiZ = -A 7 X7 + G[s] + L s4.7 (11)
k=1

Total Off-Activation:

±zs = -Asxs + G[[s]+ + L ZSizk (12)

k=1

On-Conditioned Reinforcer Association:

4 +[-HZ +Kf5]] (13)

10



Off-Conditioned Reinforcer Association:

d
= Sk[-Hzks + K[xe+J (14)

On-Output Signal:

01 = (s1+  (15)

Off-Output Signal:

02 = [z61+, (16)

where the notation [zi] + denotes a linear signal above the threshold value zero; that is,

max(z,, 0).

In the equations, I denotes the tonic arousal level, J the US input, Sk the Oth CS,

zk7 and zis the association of the k01 CS with the on- and the off-response, respectively.

A, B, C, D, E, F, G, H, K, and L are parameter values, which were kept constant for all

simulations. When E = F, zs and zs compute an opponent process and a ratio scale at

the same time. Thus one key property of the READ circuit is associative averaging, rather

than summation.

6. Opponent Extinction by Dissociating Long Term Memory Read-In and

Read-Out at Dendritic Spines

A second key property of the READ circuit has been called opponent eztinction. Al-

though passive memory decay love n ot occur in the parameter ranges which we used, when

the net signals in the on- and off- hannels are balanced, then z5 = 0 = z6 , and therefore

zk7 and zks approach 0. The LT%,! 'rees hereby continually readjust themselves to the

net imbalance between the on .W ehannels. Opponent extinction avoids the possible

saturation at maximal values ,4 , rL L'* traces zk7 and zks.

A third key property of the R E e D irr uit is a dissociation between read-in and read-

out of long-term memory (LTNI u n F Cure 10. For example, in the on-channel, read-out

1!~



is proportional to [-7]+, whereas read-in is proportional to [zs] + . Grossberg (1975) pro-

posed that such dissociation can be physiologically implemented by assuming that synaptic

plasticity occurs at the dendritic spines of neural cells. Signal [zs]+ is assumed to cause

a global potential change that invades all the spines inducing plastic changes throughout

the dendritic column, as in equation (13). However, due to the geometry and electrical

properties of the dendritic tree, an input that activates a particular dendritic branch may

not be influenced by inputs that activate different dendritic branches. Activation at a

particular dendritic branch would produce local potentials that propagate to the cell body

where they influence axonal firing via potential z 7 in equation (11).

Figure 10

7. Computer Simulations of Primary and Secondary Conditioning

This section summarizes computer simulations in different classical conditioning pa-

radigms. Although the simulations show the competence of the READ circuit in these

paradigms, additional neural machinery (such as the ART circuit in Figure 1) is necessary

to explain some difficult conditioning data.

Excitatory primary conditioning. Because the CS is presented in the presence of the

US, it becomes associated with the on-response. Variable CS1-ON describes conditioning

of the LTM trace z17 within the pathway from the sensory representation of CS1 to the on-

channel. After 10 acquisition trials, presentations of CS1 alone do not cause extinction of

the CSI-ON association (Figure 11). As explained later in the text, forgetting of C$ 1 -ON

associations is due to the acquisition of CS I-OFF associations.

Figure 11

Inhibitory primary conditioning. Because the CS is presented after the US offset, it

becomes associated with the off-response. Variable CS I-OFF describes conditioning of

the LTM trace Zis within the pathway from the sensory representation of CS, to the

off-channel. After 10 acquisition trials, presentations of CSI alone cause the CSI-OFF

12



association to relax to a persistent remembered value (Figure 12). As explained later

in the text, forgetting of the CS 1-OFF association is due to the acquisition of CS 1-ON

associations.

Figure 12

In Groesberg and Schmajuk (1987), the following types of secondary conditioning phe-

nomena are also simulated:

Excitatory secondary conditioning. The LTM trace CS1 -ON grows during the first 10

trials and is then used to induce the growth of the LTM trace CS2-ON during the next 10

trials.

Inhibitory secondary conditioning. The LTM trace CS1-ON grows during the first 10

trials and is then used, by presenting a CS 2 after CS1 ofet, to induce the growth of the

LTM trace CS 2-OFF during the next 10 trials.

8. Qualitative Explanations of Extinction and Non-Extinction Data

This section presents qualitative explanations for some difficult conditioning data that

require additional neural machinery, such as STM attentional modulation and STM reset

by expectancy mismatch by an ART circuit.

Excitatory conditioning and extinction. When a CS is paired with an aversive US on

successive conditioning trials, the sensory representation S, of CS, is conditioned to the

drive representation D,, corresponding to the fear reaction, both through its conditioned

reinforcer path S1 --+ D,, and through its incentive motivational path D.. --+ SI. As a

result, later presentations of CS1 tend to generate an amplified STM activation of SI, and

thus CS1 is preferentially attended. Due to the limited capacity of STM less salient cues

tend to be attentionally blocked when CS1 is presented.

As the cognitive-motivational feedback loop S1 -* S is strengthened during

conditioning trials, S, is also associated to a sensory expectation of the shock within an

13



ART circuit. During extinction, S, is presented on unshocked trials. Parameters of the

READ cicuit are chosen to prevent passive decay of LTM traces from occurring on these

trials. However, when the expected shock does not occur, a mismatch occurs with the

learned expectation read-out by S1, the STM activity of S is reduced by the consequent

STM reset, and an antagonistic rebound occurs in the off-channel of the READ circuit.

Consequently, S, is associated to an antagonistic rebound at D.f. Because S, is smaller

after reset than before, S -+ Doff associations take place at a slower rate than during

conditioning. After several learning trials, however, the pathway S - Doff is as strong

as the S, --. Do. pathway, and opponent extinction occurs.

Inhibitory conditioning and non-extinction. Suppose that CS, has become a condi-

tioned excitor, and that CS and CS2 are presented together in absence of the US. When

CS 1 and CS2 are simultaneously presented (Figure 13), S1 's activity is amplified by posi-

tive feedback through the strong conditioned S, - Do. -- S pathway. An a result of the

limited capacity of STM, the STM activity of S2 is blocked at time Ti. When the expected

US does not occur at time T2, the mismatch with SI's sensory expectation causes both S

and S2 to be reset, and SI's STM activity decreases while $2's STM activity increases. Due

to SI's decrease, a rebound occurs at Doff. Consequently, the unexpected nonoccurrence

of the shock enables S2 to become associated with Doff in both the pathways S2 - Doll

and Doff --+ S2. These are the primary cognitive-motivational conditioning events that

turn CS2 into a conditioned inhibitor.

Figure 13

According to the READ circuit, when presented alone the conditioned value of CS 2

D.f persists. No further extinction occurs because the CS 2 sensory expectation predicts

the absence of the US. Thus when presented alone, CS 2 does not disconfirm its sensory

expectation, and $2's STM activity is not reset.

I



9. Concludon

At least four types of learning processes are relevant in the present paper: learning

of conditioned reinforcement, incentive motivation, sensory expectancy, and motor com-

mand. These several types of learning processes, which operate on a slow time scale,

regulate and are regulated by rapidly fluctuating limited capacity STM representations of

sensory events. The theory suggest how nonlinear feedback interactions among these fast

information processing mechanisms and slow learning mechanisms participate in different

conditioning paradigms, and actively regulate learning and memory to generate predictive

internal representations of external environmental contingencies.

1Jil



References

Barto, A.G., Sutton, R.S., and Anderson, C.W. (1983). Neuron-like adaptive elements that

can solve difficult learning control problems. IEEE Transactions, SMC-13, 834-846.

Bower, G.H. (1981). Mood and memory. American Psychologist, 36, 129-148.

Bower, G.H., Gilligan, S.G., and Monteiro, K.P. (1981). Selectivity of learning caused by

adaptive states. Journal of Experimental Psychology: General, 110, 451-473.

Carpenter, G.A. and Grossberg, S. (1985). Category learning and adaptive pattern recog-

nition: A neural network model. Proceedings of the Third Army Conference on Applied

Mathematics and Computing, ARO Report 86-1, 37-56.

Carpenter, G.A. and Grossberg, . (1987a). A massively parallel architecture for a self-

organizing neural pattern recognition machine. Computer Vision, Graphics, and Image

Processing, 37, 54-115.

Carpenter, G.A. and Grossberg. S. (1987b). ART 2: Self-organization of stable category

recognition codes for analog input patterns. Applied Optics, in press.

Carpenter, G.A. and Grossberg, S. (1987c). Neural dynamics of category learning and recog-

nition: Structural invariants, reinforcement, and evoked potentials. In M.L. Commons,

S.M. Kosslyn, and R.J. Herrnsteitn Eds.), Pattern recognition and concepts in ani-

mals, people, and machines Hillsdale, NJ: Erlbaum.

Ellias, S. And Grossberg, S. (1975, Pattern formation, contrast control, and oscillations in

the short term memory of shuro .ng on-center off-surround networks. Biological Cybernet-

ics, 20, 69-98.

Grossberg, S. (1968). Some ;. * ,,,,i and biochemical consequences of psychological

postulates. Proceedings of !iv % a.t -ona Academy of Sciences, 60, 758-765.

Grossberg, S. (1969). On Iear-,.!%¢ a I "rergy-entropy dependence in recurrent and nonre-

current signed networks. Journ. -t a stical Physics, 1, 319-350.

16



Grossberg, S. (1971). On the dynamics of operant conditioning. Journal of Theoretical

Biology, 33, 225-255.

Grossberg, S. (1972). A neural theory of punishment and avoidance, I: Qualitative theory.

Mathematical Biosciences, 15, 39-07.

Grossberg, S. (1975). A neural model of attention, reinforcement, and discrimination learn-

ing. International Review of Neurobiology, 18, 263-327.

Grossberg, S. (1976). Adaptive pattern classification and universal recoding, I: Feedback,

expectation, olfaction, and illusions. Biological Cybernetics, 23, 187-202.

Grossberg, S. (1982). Studies of mind and brain: Neural principles of learning,

perception, development, cognition, and motor control. Boston: Reidel Press.

Grossberg, S. (Ed.) (1987). The adaptive brain, I: Cognition, learning, reinforce-

ment, and rhythm. Amsterdam: Elsevier/North-Holland.

Grossberg, S. and Levine, D.S. (1975). Some developmental and attentional biases in the

contrast enhancement and short term memory of recurrent neural networks. Journal of

Theoretical Biology, 45, 341-380.

Grossberg, S. and Levine, D.S. (1987). Neural dynamics of attentionally-modulated Pavlo-

vian conditioning: Blocking, inter-stimulus interval, and secondary reinforcement. Applied

Optics, in press.

Grossberg, S. and Schmajuk, N.A. (1987). A neural network architecture for attentionally-

modulated Pavlovian conditioning: Conditioned reinforcement, inhibition, and opponent

processing. Psychobiology, in press.

Hawkins, R.D. and Kandel, E.R. (1984). Is there a cell-biological alphabet for simple forms

of learning? Psychological Review, 9, 375-391.

Hebb, D.O. (1949). The organization of behavior. New York: Wiley.

17, 1



Kamin, L.J. (1969). Predictability, surprise, attention, and conditioning. In B.A. Campbell

and R.M. Church (Eds.), Punishment and aversive behavior. New York: Appleton-

Century-Crofts.

Levy, W.B., Brassel, S.E., and Moore, S.D. (1983). Partial quantification of the associative

synaptic learning rule of the dentate gyrus. Neuroscience, 8, 799-808.

Levy, W.B. and Desmond, N.L. (1985). The rules of elemental synaptic plasticity. In W.B.

Levy, J. Anderson, and S. Lehmkuhle (Eds.), Synaptic modification, neuron selectiv-

ity, and nervous system organization. Hillsdale, NJ: Erlbaum, pp.105-121.

Matzel, L.D., Schachtman, T.R., and Miller, R.R. (1985). Recovery of an overshadowed as-

sociation achieved by extinction of the overshadowing stimulus. Learning and Motivation,

16, 398-412.

Rauschecker, J.P. and Singer, W. (1979). Changes in the circuitry of the kitten's visual

cortex are gated by postsynaptic activity. Nature, 280, 58-0.

Schneiderman, N. and Gormenzano, I. (1964). Conditioning of the nictitating membrane

response of the rabbit as a function of the CS-US interval. Journal of Comparative and

Physiological Psychology, 57, 188-195.

Singer, W. (1983). Neuronal activity as a shaping factor in the self-organization of neuron

assemblies. In E. Basar, H. Flohr, H. Haken, and A.J. Mandell (Eds.), Synergetics of

the brain. New York: Springer-Verlag.

Smith, M.D., Coleman, S.R., and Gormenzano, I. (1969). Classical conditioning of the

rabbit's nictitating membrane response at backward, simultaneous, and forward CS-US

intervals. Journal of Comparative and Physiological Psychology, 69, 226-231.

Sutton, R.S. and Barto, A.G. (1981). Toward a modern theory of adaptive networks: Ex-

pectation and prediction. Psychological Review, S8, 135-170.

V I



FIGURE CAPTIONS

Figure 1. Anatomy of an adaptive resonance theory (ART) circuit: (a) Interactions

between the attentional and orienting subsystems. Code learning takes place at the long

term memory (LTM) traces within the bottom-up and top-down pathways between levels

F, and F2. The top-down pathways can read-out learned expectations, or templates, that

are matched against bottom-up input patterns at Fl. Mismatches activate the orienting

subsystem A, thereby resetting short term memory (STM) at F2 and initiating search for

another recognition code. Subsystem A can also activate an orienting response. Sensitivity

to mismatch at F is modulated by vigilance signals from drive representations. (b) Train-

able pathways exist between level F and the drive representations. Learning from F2 to a

drive representation endows a recognition category with conditioned reinforcer properties.

Learning from a drive representation to F2 a0sociates the drive representation with a set

of motivationally compatible categories. (Adapted from Carpenter and Groseberg, 1987c.)

Figure 2. Schematic conditioning circuit: Conditioned stimuli (CS) activate sensory

representations (SC,,) which compete among themselves for limited capacity short term

memory activation and storage. The activated S,,, elicit conditioned signals to drive

representations and motor command representations. Learning from an Sc, to a drive

representation D is called conditioned reinforcer learning. Learning from D to S,., is called

incentive motivational learning. Signals from D to S,., are elicited when the combination of

external sensory plus internal drive inputs is sufficiently large. In the simulations reported

herein, the drive level is assumed to be large and constant.

Figure 3. A blocking paradigm. The two stages of the experiment are discussed in

the text.

Figure 4. Experimental relationship between conditioned response strength (mea-

sured by percentage of trials on which response occurs) and interstimulus interval in the

rabbit nictitating membrane response. (Reprinted with permission from Sutton and Barto,



1981.) U

Figure 5. Simulated network: Each sensory representation possesses two stages with

STM activities z,1 and z,2 . A CS or US input activates its corresponding zil. Activation

of zil elicits unconditionable signals to z, 2 and conditioned reinforcer signals to D, whose

activity is denoted by yj. Incentive motivational feedback signals from D activate the

second stage potentials z, which then send feedback signals to zl. Conditionable long-

term memory traces are designated by hemi-disks.

Figure 6. Plot of CR acquisition speed as a function of ISI. This speed was computed

by the formula 100 x (number of time units per trial)/ (number of time units to first CR).

Figure 7. Blocking simulation: In (a)-(d), the ISI = 6 between CS and US onset.

Five trials of CS1-US pairing are followed by five trials of (CS1 + CS2)-US pairing. Then

CS2 is presented alone for one trial. (a) Activity z11 of SC$ through time; (b) Activity

z 21 of SCS through time; (c) LTM trace z11 from SCS1 to D through time; (d) LTM trace

z21 from C5 $ to D through time.

Figure 6. Example of a feedforward gated dipole: A sustained habituating on-response

(top left) and a transient off-rebound (top right) are elicited in response to onset and

offset, respectively, of a phasic input J (bottom left) when tonic arousal I (bottom center)

and opponent processing (diagonal pathways) supplement the slow gating actions (square

synapses). See text for details.

Figure 9. A READ I circuit: This circuit joins together a recurrent gated dipole

with an associative learning mechanism. Learning is driven by signals St from sensory

representations S1, which activate long term memory (LTM) traces zk7 and zhs that sample

activation levels at the on-channel and off-channel, respectively, of the gate dipole. See

text for details.

Figure 10. A possible microarchitecture for dissociation of LTM read-in and read-out:

Individual LTM-gated sensory signals Skzk7 are read-out into local potentials which are
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summed by the total cell body potential z 7 without significantly influencing each other's

learned read-in. In contrast, the input signal zs triggers a massive global cell activation

which drives learned read-in at all active LTNM traces abutting the cell surface. Signal z5

also activates the cell body potential X7.

Figure 11. Computer simulation of primary excitatory conditioning and extinction

with slow habituation and large feedback in a READ I circuit: CS, is paired with the US

during the first 10 simulated trials, and CS, is presented in the absence of the US in the

next 10 simulated trials. The numbers above each plot are the maximum and minimum

values of the plot. Parameters are A = 1, B = .005, C = .00125, D = 20, E = 20,F =

20, G = .5, H = .005, K = .025, L = 20, M = .05.

Figure 12. Computer simulation of primary inhibitory conditioning and extinction

with slow habituation and large feedback in a READ I circuit: CS, is presented after the

US offset during the first 10 simulated trials, and CS, is presented in the absence of the

US in the next 10 simulated trials. The same parameters were used as in Figure 11.

Figure 13. Presentation of CS, and CS 2 when CS, has become a conditioned excitor

and the compound stimulus is followed by no-shock: During the no-shock interval between

times T, and T2 , S, is actively amplified by positive feedback and S 2 is blocked. Nonoccur-

rence of the expected shock causes both S, and S2 to be reset. Si's STM activity decreases

and S2's STM activity increases Due to Si's increase, D. also decreases, thereby causing

a rebound at Doll. This rebound boromes associated with the increased activity of S 2.
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